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In the framework of pattern dynamics approach, the discrete bubble model was developed for simulating
inherent fluctuation of void fraction in a horizontal two-phase flow. Then flow patterns were identified
based on the statistical properties of void fraction fluctuation, and the flow pattern map agreed with
the experimental observation of high-pressure two-phase flow of CO2 in horizontal tubes. The time-aver-
aged pressure drop and the void fraction obtained in the simulation agreed reasonably with the existing
correlations. Thus the horizontal flow version of the discrete bubble model demonstrates its relevance in
simulating inherent fluctuation of two-phase flow.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Two-phase flow is a very complex flow due to the existence of
interface between gas and liquid phases. The complexity is mainly
brought about by deformation of the interface, coalescence and
splitting of bubbles. An instantaneous geometrical configuration
of such interface, i.e. a frozen image of interfaces or geometrical
structure, is referred to as ‘‘flow pattern”. Each flow pattern has un-
ique characteristics, and thus is closely related to boiling heat
transfer, that is a very important design factor of two-phase flow
systems, such as boiler, BWR, SG of PWR and other heat exchangers
with phase change. Based on huge amount of investigations in the
past five to six decades, a variety of correlations and simulation
codes, e.g. RELAP and TRAC based on two-fluid model [1], are
now available in planning and/or design stages of two-phase
systems.

As is well known, a principal and typical feature of two-phase
flow is the inherent fluctuations of pressure and void fraction
caused by the existence of interface and its geometrical configura-
tion. When a high heat flux is imposed on such a two-phase sys-
tem, this inherent fluctuation may cause a critical heat flux
condition and other unfavorable events [2]. So far proposed models
such as drift-flux model and two-fluid model are formulated based
on time-averaged properties [1]. This time-averaging is conducted
ll rights reserved.
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over a short period so as to be available in simulating transient
thermal-flow behavior with the time constant of an order of resi-
dence time through a concerned element of two-phase flow sys-
tem, but over a long period so as to smooth local/instantaneous
fluctuation and discontinuity of parameters, so that the velocities
of both phases are defined everywhere in time and space. Thus
the code has no capability to simulate inherent fluctuation of
two-phase flow. In simulating two-phase flow with e.g. two-fluid
model, we need many correlations specified to each flow pattern,
and flow pattern transition criteria as well. In order to include
detailed structure, we would need further detailed correlations
and/or closure relationships. An increase in the number of correla-
tions in simulating complex properties results in a decrease in the
flexibility of the model, and obstructs rather than enhances an
appearance of complexity. In order to gain insight into the com-
plexity in two-phase flow and inherent fluctuation, an alternative
approach is indispensable.

Focusing on the behavior of bubbles and induced flow structure
including turbulence, numerical simulations have been conducted
with so-called interface-tracking simulation [3], including, e.g.
front-tracking, VOF, phase-field modeling, level-set, and a variety
of applications have been reported. These simulations have, how-
ever, difficulty in simulating whole boiling channel system, and
the transient behavior such as flow oscillation is far beyond the
scope.

Considering the complexity in two-phase flow, an alternative
approach with e.g. CA (cellular automata) and coupled-map lattice
may be applicable, while realistic images might be harmed due to
the use of metaphor model. In order to simulate instantaneous
fluctuations of the void fraction and to know the statistical
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Fig. 2. Single bubble hypothesis.
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properties unique to each flow pattern, a pattern dynamics model
has been developed by the authors based on the void-propagation
equation, i.e. mass conservation equation of gas phase and a lim-
ited number of local rules representing momentum effects [4–6].
The developed model is referred to as ‘‘discrete bubble model” by
the authors. These previous works aimed to simulate isothermal
two-phase flow in a vertical tube, and the simulation results well
demonstrated the void fraction fluctuation as well as the specific
statistical properties of each flow pattern, i.e. bubbly, slug, churn
and annular flows.

This discrete bubble model has been expanded to become avail-
able in a horizontal two-phase flow simulation, and in this paper
the discussion is mainly focused on newly developed items for hor-
izontal flow simulation. Then finally the high potential of the
proposed model is demonstrated through a comparison with the
experimental observation of flow patterns.
2. Discrete bubble model

Fundamental concepts of the newly developed discrete bubble
model for horizontal flow is, in principle, the same as the previ-
ously proposed vertical flow model. The new development is
focused on the pressure and the slip relationships suitable to a
horizontal flow condition, and the rests are unchanged.
2.1. Flow model

The flow field is one-dimensional isothermal horizontal two-
phase flow as illustrated in Fig. 1. A liquid is supplied from the left
end, and a gas is injected through a gas-injection section of length
LM. Two-phase mixture generated in this section flows through the
tube towards the right-end and is ejected to an ambient space at
the system pressure.

In the discrete bubble model, the flow field is divided into cylin-
drical cells with the same length as the tube diameter, and this
cylindrical cell is used as the frame of reference. Then the spatial
resolution of the present model is limited to this unit cell size. A
single hypothetical bubble located in the cell center is defined as
a volume geometrically similar to the unit cell as shown in Fig. 2.
Then the void fraction eG in the cell is given by Eq. (1).

eG ¼
DB

DP

� �3

ð1Þ

where DB is the diameter of the single hypothetical bubble and DP is
the diameter of tube. Although the present model is one-dimen-
sional, the hypothetical bubble is introduced in defining various lo-
cal rules including void fraction, bubble induced wake, pressure
drop and so on. The geometrical similarity of the hypothetical bub-
ble to the unit cell is not an essential factor, while this hypothesis
together with the definition of the unit cell makes the formulation
rather simple. Once accepted these hypotheses, each flow pattern is
represented as a bubble train as demonstrated in Fig. 3, where the
left column represents images of geometrical configuration of the
Fig. 1. Flow
interface and the right column corresponding bubble train aligned
along the tube.

In view of whole flow field during steady and/or slow transient
conditions, gas compressibility plays a minor role in the void-prop-
agation. Thus the spatio-temporal behavior of void fraction in one-
dimensional flow field is represented with a void-propagation
equation, Eq. (2), for incompressible flow.

@eG

@t
þ @ðeGUGÞ

@y
¼ q ð2Þ

where UG is a velocity of gas phase, t and y represents time and an
axial coordinate, respectively, q is a source term of gas phase and is
given as a function of a volumetric flux JG of gas phase, q = JG/LM, in
the gas-injection section, while q = 0 outside the injection section.
In a boiling channel, this source term is given by the vapor genera-
tion rate per unit volume. When a phase change or boiling takes
place throughout the tube, the source term is distributed along
the tube.

This void-propagation equation is applied over the whole flow
field as a global rule. In order to simulate dynamic behavior, such
as bubble coalescence, breakup, expansion and/or compression
leading to flow pattern transition, it is essential to take into ac-
count momentum effects exerted on the hypothetical bubble. Such
momentum effects are included as local rules, being the same as in
the previous paper [5,6]. In the following sections, details of these
local rules are described, while focusing on newly introduced and/
or improved items for the horizontal flow simulation. The detailed
structure of the model can be also found elsewhere [5,6].

2.2. Relative velocity between gas and liquid phases

Provided the local drift velocity uGJ with respect to the center of
volume of the mixture JT, the velocity of gas phase UG is given by
[1]

UG ¼ JT þ uGJ ¼ JG þ JL þ uGJ ð3Þ

where JL is a volumetric liquid flux. The drift velocity of gas phase is
a function of the void fraction eG and the slip velocity ur as follows.
model.



Fig. 3. Flow configurations, left column: actual image, right column: model image.

Fig. 4. Cell system.
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uGJ ¼ ð1� eGÞur ¼ ð1� eGÞðUG � ULÞ ð4Þ

where UL is a velocity of liquid phase. Although these local relation-
ships are integrated across the tube cross-section to give the distri-
bution parameter and the weighted-mean drift velocity in general
purposes, the present model still employs Eqs. (3) and (4) in the
present form with respect to universal application to all flow
patterns.

The slip velocity used in the vertical flow model was given with
a terminal velocity of bubble in a stationary liquid. In the present
horizontal flow, this terminal velocity corresponds to the velocity
of air cavity during a discharging process of liquid into an ambient
air out of a liquid-filled horizontal tube closed at one end. Such a
phenomenon is referred to as the ‘‘gravity current”, and was ana-
lyzed by Benjamin [7]. In a small-bore tube with flowing liquid,
the velocity of air cavity suffers from an effect of momentum flux
as well as the surface tension, and is given by Weber [8] and Sak-
aguchi et al. [9],

ur ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDpðqL � qGÞ

qL

s
f0:542� 1:76Bo�0:56g ð5Þ

where the dimensionless number Bo � ðqL � qGÞgD2
P=r denotes the

Bond number, g is the acceleration of gravity, qL and qG are densi-
ties of liquid and gas phases, respectively, and r is a surface tension.
The first term in the parenthesis of right-hand side in Eq. (5) corre-
sponds to Benjamin’s solution, i.e. the cavity velocity without the
effect of surface tension. This equation implies that the cavity veloc-
ity, i.e. the slip velocity in the present case, becomes zero beyond
Bo = 8.19. This Eq. (5) is extensively used for simplicity of the
numerical simulation in the whole range of the present investiga-
tion, although the gravity current phenomena may be limited only
in the plug and slug flows.

2.3. Wake effect of preceding bubble

When two bubbles move successively, a succeeding bubble is
influenced by the wake of a preceding bubble. The succeeding bub-
ble catches up with the preceding bubble, and these two bubbles
coalesce into one large bubble. Such a feature is often observed
in a vertical flow, and may be consistent in a horizontal flow as
well. Thus the same relationship as the vertical flow model is used
in estimating the wake velocity.

uw;max;i ¼ c1ur;iþ1
CDD2

B;iþ1

Dy2

 !1=3

ðeG;iþ1 P eG;iÞ

uw;max;i ¼ 0 ðeG;iþ1 < eG;iÞ

ð6Þ

where CD (=0.44) is a drag coefficient, c1 is a constant, c1 = 0.715, Dy
the length of unit cell, and suffix i and i + 1 the cell numbers as illus-
trated in Fig. 4. Eq. (6) is based on the relationship for circular wake
by Schlichting [10]. This equation gives a maximum wake velocity
in the ith cell caused by the bubble in the i + 1th cell. Just as the
same manner as the vertical flow model, the wake effect exerted
on the bubble in the ith cell is given by an integration over the
length c3 � Dy ahead of the concerned bubble,

uw;i ¼ uw;max;i þ
Xc3

j¼1

uw;max;iþj expf�c2ðjþ 1Þg ð7Þ

where c2 and c3 are constants, c2 = 0.14 and c3 = 20, respectively
(also Refs. [5,6]). The assumed decay process is exemplified in
Fig. 5. When tube diameter DP = 6.0 mm is the case, the integration
is conducted over 120 mm, i.e. 20 cells, while the wake velocity
damps to 25% in the first 10 cells, i.e. 60 mm.

Thus obtained wake velocity is substituted into Eq. (8) to give
the slip velocity.

ur;iþ1 ¼ uw;i c1
CDD2

B;iþ1

Dy2

 !1=3
8<
:

9=
;
�1

ðuw;i > 0Þ ð8Þ

The constants c1–c3 and the drag coefficient CD retain the same
respective value, regardless the fluid properties, flow conditions
and flow orientations. This is mainly because the present model
aims at realizing principal feature of flow pattern formation, but
not obtaining exact solutions.

2.4. Compressibility of gas phase

In spite of the discussion in Section 2.1, the gas compressibility
plays, in reality, an important role in a local and instantaneous
bubble behavior. In other words, bubbles move with expanding
or compressing, even though weakly, in accordance with the local
pressure, and these fluctuations of bubble, i.e. void fraction fluctu-
ation, show substantial importance in the formation of intermit-
tent flow pattern [5,6,11]. An inclusion of gas compressibility



Fig. 5. Decay of wake velocity.
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mechanism in local rules, as a matter of course, gives rise to an
inconsistency with Eq. (2) of incompressible flows. This inconsis-
tency is covered with the calculation sequence as described in Sec-
tion 3.

Provided isothermal state change of the hypothetical bubble in
the ith cell, we obtain

Vnþ1
B;i ¼ Vn

B;iðpn
i =pnþ1

i Þ ð9Þ

where VB is a volume of bubble, p is a static pressure and superscript
n and n + 1 denote nth and n + 1th time steps, respectively. The local
pressure is given as an integral of cell-to-cell pressure difference
from the exit of the tube to the designated location.

Ozawa et al. [12] and Sakaguchi et al. [13] analyzed a slug flow
in a horizontal tube on the basis of the regime-based modeling
shown in Fig. 6. The liquid slug travels with the scooping of liquid
and momentum ahead of the liquid slug, and shedding liquid be-
low the large bubble at the tail of liquid slug. This mechanism is re-
ferred to as the scooping-shedding mechanism [14].

One-dimensional mass and momentum conservations with
moving boundary are given with a help of Leibniz rule [12,13,15],

d
dt

Z
V
qdv þ

Z
A
qfðU � UaÞ � ngda ¼ 0 ð10Þ

d
dt

Z
V
qUdv þ

Z
A
qUfðU � UaÞ � nda ¼ �

Z
A

pndaþ
Z

V
r � sdv ð11Þ

where q is a density, U a velocity vector, Ua a velocity vector of
moving boundary, n a unit vector normal to the interface, s a vis-
cous stress tensor, V a volume of reference body and A the interfa-
cial area. In a vertical flow model, the gravity term is needed in the
right-hand side of Eq. (11). In the framework of one-dimensional
flow, these equations are applied to the liquid-scooping region,
main body of the liquid slug and the liquid-shedding region, respec-
tively, where the first and the third regions are considered as a kine-
matic shock wave [16], and quasi-steady relationships are provided.
Fig. 6. Regime-based slug flow modeling.
Then the liquid slug behavior is given, under the assumption of uni-
form liquid holdup in the slug, by

dðqLeLLSÞ
dt

þ eLqLðUB � USÞ ¼ 0 ð12Þ

pF � pR ¼
d
dt
ðqLeL;SUL;SLSÞ þ Dpf þ eL;FqLUL;FðUL;F � USÞ

� eLqLUL;SðUL;S � UBÞ ð13Þ

where Dpf a frictional pressure drop across the reference volume,
eL the liquid hold-up (=1 � eG), LS the liquid slug length, UL the liquid
velocity, US and UB the liquid slug velocity and the large bubble
velocity. Subscripts F, R and S denote the scooping region, the shed-
ding region and the liquid slug, respectively. Although these equa-
tions have been derived for a macro-scale slug flow, the similar
relationships are provided in formulating cell-to-cell pressure dif-
ference in the discrete bubble system. Thus the original equation
(13) is modified so as to be applicable to the discrete bubble model
under the quasi-steady assumption.

pi � piþ1 ¼ Dpf ;i � qLgðeL;iHeq;i � eL;iþ1Heq;iþ1Þ=2

þ eL;iþ1qLUL;iþ1ðUL;iþ1 � UG;iþ1Þ � eL;iqLUL;iðUL;i � UG;iÞ
ð14Þ

where the liquid slug velocity US is assumed equal to the large bub-
ble velocity UB, and these velocities are further assumed equal to
the velocity of gas phase UG. Due to this simplification, Eq. (12) be-
comes not in need in discussing the pressure difference. The first
term of right-hand side in Eq. (14) corresponds to the frictional
pressure drop between successive cells. The second term containing
the equivalent liquid height Heq represents the static pressure dif-
ference caused by the difference in liquid heights across two succes-
sive cross-sections, and the third and fourth terms represent the
scooped and shed momentums at the nose and the tail of the liquid
slug, respectively.

Compared with the previous paper for a vertical flow [5,6], the
second to fourth terms are newly introduced in estimating the
pressure difference instead of the gravitational pressure drop along
the tube axis. The third and fourth terms are not limited to a hor-
izontal flow, but are rather small compared with the gravitational
pressure drop in a vertical flow.

The frictional pressure drop is estimated as a sum of the part of
liquid phase DpL and the part of the large bubble DpB.

Dpf ¼ DpL þ DpB ¼ kL
DP � DB

2DP
qLULjULj þ kB

DB

2DP
qLULjULj ð15Þ

where a wall friction factor kL is given by Hagen-Poiseuille equation
in a laminar flow and Blasius equation in a turbulent flow, and the
friction factor of the second term is set constant kB ¼ 0:02 as given
by Wallis’ annular model [17]. It is noted that variables in Eq. (15)
and next Eq. (16) are expressed without suffix i, but are defined
in each cell.

The equivalent liquid height in the right-hand side of Eq. (14) is
calculated simply by the substitution of a stratified flow model
shown in Fig. 7 [9,13], neglecting the geometrical configuration
of bubble provided in the present model.

eLHeq=2 ¼ 1
AC

Z h

0
yLCdy ð16Þ

where

LC ¼ DP cos /; h ¼ DPð1þ sin /Þ=2; eL ¼ ðpþ 2/þ sin 2/Þ=2p

and AC is the tube cross-section, y is the distance from a gas–liquid
interface, LC is the chord length, h is the height of the interface, and
/ is the angle of the interface.



Fig. 7. Definition of equivalent liquid height.
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2.5. Phase re-distribution for geometrical consistency

When a bubble expands due to the pressure change, the volume
of the bubble happens to exceed beyond the volume of the unit
cell. In order to avoid such inconsistency, a limiting value of the
void fraction eG,cr is predetermined, and the excess amount DeG,i =
eG,i � eG,cr beyond this limiting value is compensated through the
phase re-distribution process to the downstream cell. Instead, a
part of surplus liquid hold-up DeL,i pushed out of the downstream
cell is uniformly re-distributed to upstream cells as illustrated in
Fig. 8. The re-distributed liquid hold-up deL,i into each cell is as-
sumed to be a function of limiting value of void fraction as follows:

deL;i ¼ DeL;i=i ¼ f�DeG;i expð�c4eG;crÞg=i ð17Þ

where c4 is set constant, c4 = 5, and the limiting void fraction eG,cr is
also constant, eG,cr = 0.95 throughout the simulation. Moreover
these values are the same as those of the vertical flow model. Then
the exponential term is rather small, 0.087. Thus, only a minor part
of liquid corresponding to the excess void fraction is re-distributed
upstream, and most of the surplus liquid is pushed downstream.
Such a functional relationship is artificial, while it seems not so
peculiar when observing the behavior of a large bubble and the
surrounding liquid during transient states. This phase re-distribu-
tion process is rather important in the transition process of
intermittent to annular flow.

3. Numerical simulation

The numerical simulation was conducted with a finite-differ-
ence method. A staggered-mesh system is applied, i.e. the void
Fig. 8. Sequence of simulation.
fraction and the pressure are defined at the center of the unit cell,
and the velocity on the boundary of the cell. A time derivative and
convection term in the finite-difference equation were expressed
with a forward difference and an upwind difference, respectively.
Constant inflows of liquid and gas are set at the inlet, and contin-
uous outflow at the right-end exit as shown in Fig. 1 in the present
simulation. These boundary conditions are not definite ones, but
may be given, e.g. as a function of time.

The simulation sequence is simply illustrated in Fig. 8: first, the
hypothetical bubble movement, i.e. provisional void fraction distri-
bution, is calculated with the void-propagation equation, Eq. (2),
and then the pressure distribution is calculated, so that the volume
expansion or compression is determined. The excess void fraction
and corresponding surplus liquid holdup are re-distributed. Thus
obtained void fraction is recorded as the definite value at a desig-
nated time step, and the simulation proceeds to the next time step.

Aiming at the verification of the present horizontal flow model,
the simulation condition and the system configurations are se-
lected as shown in Table 1 so that the flow pattern maps are com-
pared with the experiment by the authors [18,19].

3.1. Void fraction fluctuation and flow pattern map

Prior to describing simulation results, a brief explanation on the
experiment is given here. Experimental investigations were con-
ducted with a forced-flow boiling system of CO2 shown in Fig. 9.
Experimental setup consists of CO2 pump, a pre-cooler, a test sec-
tion of 2.0 mm in inner diameter with Joule heating, a sight glass
for flow pattern observation, an exhaust gas heater and a laminar
flowmeter. Operating pressure was in the range 4.0–6.7 MPa, mass
flux was ranging from 200 to 700 kg/m2s, and vapor quality 0.05–
0.9. Detailed description may be found elsewhere [18,19].

Typical flow patterns observed at 6.5 MPa are shown in Fig. 10.
Each flow pattern has the following features, being used in the flow
pattern identification in the experiments:

Bubbly flow: dispersed small bubbles,
Plug flow: slow-moving elongated bubbles at relatively low
void fraction,
Slug flow: intermittent large-scale liquid slugs and large
bubbles,
Annular flow: gas core surrounded with thin liquid film, often
with entrainments,
Slug-annular flow: gas flow penetrating through the liquid slug,
and
Wavy-annular flow: annular flows with rather thick and wavy
liquid layer at the bottom.

Further increase in the gas velocity beyond the wavy-annular
flow brings about an appearance of liquid entrainment above the
wavy interface. Such a flow pattern is referred to as the wavy-mist
flow which is, however, not shown in Fig. 10.
Table 1
Simulation conditions.

Working fluid CO2

System pressure, p 6.5 MPa
Mass flux, G 50–800 kg/m2s
Quality, x 0.01–0.9
Total length of tube, LT 400 mm
Mixing chamber length, LM 20 mm
Pressure drop measurement, LP 200 mm
Tube diameter, DP 2.0 mm
Unit cell length, Dy 2.0 mm
Number of cells, GN 200
Time step, Dt 0.01 ms



Fig. 9. Experimental setup of forced-flow boiling of CO2.

Fig. 10. Observed flow patterns in the experiment with CO2 at 6.5 MPa in 2.0-mm tube.
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In the following, simulation results are described with emphasis
on the flow pattern. Typical snapshots of the void fraction distribu-
tion are shown as a function of the axial coordinate in Fig. 11(a) to-
gether with the representative probability density functions (PDF)
in Fig. 11(b) detected at the middle position, y = 0.222 m, along the
tube. Two vertical lines at the left end in the snapshot represent
the gas injection region. Flow conditions, mass flux G and quality
x, are indicated in each PDF. Simulation results show, in part, sim-
ilar to those in the vertical flow. The first one shown in Fig. 11(a)-1
(G = 50 kg/m2s, x = 0.01) belongs to this group: there is ripple-like
void fraction fluctuation, i.e. void wave, traveling along the tube.
Corresponding PDF has a single peak at low void fraction as shown
in Fig. 11(b)-1. This void fluctuation pattern corresponds to bubbly
flow, similarly to the vertical flow [5,6,20].

Increased vapor quality as shown in the case of Fig. 11(a)-2
(G = 50 kg/m2s, x = 0.1), relatively large void waves, corresponding
to large bubbles, are formed intermittently along the tube. Then
the PDF has two peaks at both low and high void fractions. This
flow pattern is considered as slug flow.
At rather high quality as shown in Fig. 11(a)-3 (G = 300 kg/m2s,
x = 0.9), the void fraction becomes rather uniform, keeping almost
equal value to the pre-determined limiting void fraction. The PDF
has a single peak at high void fraction as shown in Fig. 11(b)-3. This
flow pattern corresponds to annular flow.

The next group of the flow patterns are those appeared uniquely in
this horizontal flow model. In Fig. 11(a)-4 (G = 300 kg/m2s, x = 0.2),
the void fraction has a sinuous distribution along the tube, but is lim-
ited within a moderate range. Corresponding PDF has two peaks like a
slug flow as in Fig. 11(b)-4, while the amplitude is relatively small
compared with the slug flow. This type of flow seems a transition
from slug to annular flow, and corresponds to slug-annular flow.

In the last column, Fig. 11(a)-5 (G = 50 kg/m2s, x = 0.8), the void
fraction is rather high at the wave crest, but with rather low value
in-between successive two wave crests. With reference to the
holdup, the flow behavior seems annular flow but with large
amplitude waves. The existence of this large wave results in the
PDF with two peaks shown in Fig. 11(b)-5. This flow pattern corre-
sponds to wavy-annular flow.



Fig. 11. Void fraction fluctuation and PDF: (a) snap shot of void fraction distribution and (b) corresponding PDF, (p = 6.5 MPa).

Fig. 12. Flow pattern map: (a) experiment; (b) simulation, solid lines: Cheng et al.
[21], dashed lines: Revellin and Thome [22], IB: isolated bubble regime, CB:
coalescing bubble regime and A: annular flow regime.
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Most of the typical features observed in the numerical simula-
tion well correspond to the flow patterns in the experiment. In
identifying the flow patterns from the numerical simulation data,
plug flow is hard to classify, and may be included either in bubbly
flow or in slug flow, depending on the amplitude of void fraction
fluctuation. In addition, the wavy-annular flow in the simulation
may include wavy and wavy-mist flows. This is mainly because
the present simulation is based on the one-dimensional flow mod-
el and then insensible to the phase distribution across the tube
cross-section. From this context, a mist flow is quite different in
the arrangement of phases from the pre-determined hypothetical
bubble system shown in Fig. 2, and thus out of scope of the present
model, although mist flow was observed in the experiment at very
high quality at lower pressure, 5.0 MPa [18,19].

The flow pattern identification of the simulation results are con-
ducted, in principle, based on the above-mentioned typical fea-
tures, being similar to Jones and Zuber [20], and the simulation
results for vertical flow [5,6], while the slug-annular as well as
the wavy-annular patterns, in particular, needs additional thresh-
old conditions. Then the flow pattern-transition criteria were
determined with a maximum (eG,max) and a minimum (eG,min) void
fractions, together with the above-mentioned typical features:

Bubbly flow : eG;min < 0:1; eG;max < 0:6
Slug flow : eG;min < 0:1; eG;max P 0:6
Annular flow : eG;min P 0:8
Slug-annular flow : 0:1 < eG;min < 0:8; eG;max < 0:9
Wavy-annular flow : 0:1 < eG;min < 0:6; eG;max P 0:9

ð18Þ

Thus identified flow pattern map (lower column) are plotted as a
function of mass flux and quality in Fig. 12 together with the exper-
imental result (upper column) [18,19]. In these flow pattern maps,
so far proposed flow pattern transition criteria are also drawn for
reference: solid lines by Cheng et al. [21] developed for CO2 with
ordinary tube size (tube diameters from 0.6 to 10 mm), and the
dashed lines by Revellin and Thome [22] for micro-channels, where
symbol ‘‘IB” denotes isolated bubble regime, ‘‘CB” coalescing bubble
regime, and ‘‘A” annular flow regime. In comparison with the exper-
imental observation, the predicted regions for bubbly flow, annular
flow, and the transition patterns, i.e. slug-annular and wavy-annu-
lar flows, coincide approximately with the experiment. In addition,
the slug-annular flow in the simulation penetrates into the pre-
dicted annular flow region, which is quite similar to the experimen-
tal observation. The slug flow occupying low mass flux region of the
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simulation has not been observed in the experiment due to the lim-
itation of the pump performance, while experimental data at
5.0 MPa suggest an availability of the present model [19] for slug
flow as well. Detailed discussion on the comparison with the exist-
ing criteria may be found elsewhere [19].

To demonstrate further verification of the present model, com-
parison with the flow pattern map shown in the upper column of
Fig. 13 by Schael and Kind [23] is conducted. Schael and Kind ob-
served flow patterns of CO2 at 2.64 MPa, being at lower pressure
than the present case, but with micro-fin tube of 8.62 mm in diam-
eter. They identified bubbly, slug, slug-annular similarly to the
present paper, annular, wavy-annular, wavy and stratified-wavy
flows, while in Fig. 13 the wavy and the stratified-wavy flows at
low mass flux are included in the same category of stratified-wavy
flow. Curves drawn for reference in the figure are of Cheng et al.
[21]. The simulation result indicates that the slug, slug-annular
and annular flows are as a whole in good agreement with the
experimental results. This fact suggests that the effect of micro-
fin is not significant for the appearance of these dominant flow
patterns. It is of course that there exists still a minor difference be-
tween the experiment and the simulation, e.g. the plotted strati-
fied-wavy region approximately corresponds to the wavy-annular
region in the simulation. On the other hand, the wavy-annular flow
region of the experiment seems to be included in the annular flow
region of the simulation. At low quality, the wavy-annular region
penetrates into the slug-annular region in the simulation, although
not in the experiment. This inappropriate appearance of wavy-
annular flow may be due to the fact that the present flow pattern
identification is based only on the void fraction fluctuation, but
not on the geometrical configuration as in the experiment.

As described above, the present model is available to realize the
PDF of void fraction fluctuation, i.e. a fluctuation pattern of void
fraction being specified to each flow pattern. However, if the model
has a capability of not only pattern formation but also quantitative
data prediction including pressure drop, void fraction and so on,
the present model becomes of great significance in two-phase flow
dynamics.
Fig. 13. Flow pattern map: (a) experiment by Schael and Kind [23], courtesy of Prof.
M. Kind; (b) simulation, solid lines: Cheng et al. [21].
3.2. Time-averaged characteristics

In this section are discussed the time-averaged properties of
pressure drop and void fraction. The time-averaged values are ob-
tained in the fully-developed region. Fig. 14 shows time-averaged
pressure drop plotted in the frame-work of Lockhart–Martinelli
correlation [24],

/2
L ¼ ðDpf =LPÞ=ðDpf =LPÞL ð19Þ

X2 ¼ ðDpf =LPÞL=ðDpf =LPÞG ð20Þ

where the pressure drop Dpf is the time-averaged value, /L is a two-
phase friction multiplier, and X is the Martinelli parameter. The
length LP means a distance for pressure drop calculation. Parenthe-
ses ()L and ()G denote single phase flows of liquid and gas,
respectively. Lines in this figure are drawn with the following Chis-
holm’s correlation [25].

/2
L ¼ 1þ C

X
þ 1

X2 ð21Þ

where C = 21 if gas and liquid phases are in turbulent flow, denoted
by ‘‘tt” and, C = 2 if both phases are in laminar flow, ‘‘vv”. Mishima
and Hibiki [26] modified Chisholm’s parameter so as to be applica-
ble to small-bore tubes given by

C ¼ 21� ½1� expð�0:319DPÞ� ð22Þ

where C = 9.9 for DP = 2 mm. The pressure drop based on homoge-
neous flow model is also drawn in this figure. Simulation results
are on the whole in good agreement with Chisholm’s correlation
with C = 2. The pressure drop prediction with homogeneous flow
model works rather well at such a high-pressure, which is in good
agreement with the experimental evidence [18,27].

Fig. 15 shows the time-averaged void fraction as a function of
vapor-phase velocity JG/eG and the total volumetric flux JT. Well-
known drift-flux model was first proposed by Zuber and Findlay
[28], and was modified by Rouhani and Axelsson [29], and further
modification was conducted by Steiner [30] considering an appli-
cation to horizontal flow as follows:
eG ¼
x
qG

C0
x
qG
þ 1� x

qL

� �
þ uGJ

G

� ��1

ð23Þ

where

C0 ¼ 1þ 0:12ð1� xÞ

uGJ ¼ 1:18ð1� xÞ grðqL � qGÞ
q2

L

� �0:25 ð24Þ

where C0 is a distribution parameter and uGJ is the drift velocity.
Mishima and Hibiki [26] proposed the distribution parameter and
the drift velocity as well in application to small-bore tubes.
Fig. 14. Correlation of time-averaged pressure drop.
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C0 ¼ 1:2þ 0:51 expð�0:691DPÞ
uGJ ¼ 0

ð25Þ

These correlations are drawn with solid and dashed lines, respec-
tively. The time-averaged void fraction well agrees with Rouhani–
Axelsson–Steiner correlation. On the other hand, Mishima and
Hibiki’s correlation deviates significantly from the present data.
This is mainly because Mishima and Hibiki’s correlation is applica-
ble to so-called mini-channel. On the other hand the present data of
high-pressure CO2 does show macro-channel character but not of
mini-channel [17,27].

The above-mentioned comparisons with the existing correla-
tions suggest that the present discrete bubble model for horizontal
flows is very effective in predicting not only steady but also unsteady
phenomena, including inherent fluctuations, in two-phase flows.
4. Conclusion

The discrete bubble model, previously proposed for a vertical
upward flow, was further developed so as to be applicable to the
horizontal two-phase flow, and the void fraction fluctuation, i.e.
void wave, was successfully simulated. The dominant flow patterns
in horizontal flows, i.e. bubbly, slug, slug-annular, annular and
wavy-annular flows, were identified with the PDF of the void frac-
tion fluctuation, and the resulting flow pattern maps were in good
agreement with the experimental results of CO2 at high-pressure.
Moreover, time-averaged characteristics of frictional pressure drop
and void fraction agreed with existing correlations. Based on these
evidences, it is concluded that the discrete bubble model gives rea-
sonable void fraction fluctuations in horizontal two-phase flows.
Thus, the proposed model gives effective means for simulating
transient thermal-flow phenomena, including inherent two-phase
flow dynamics.
Acknowledgements

This work was supported by JSPS. KAKENHI (19360104). Authors
wish to express sincere thanks to Messrs. T. Yamamoto, Y. Ueda and
Y. Tanaka who supported experimental part of this investigation.
References

[1] M. Ishii, T. Hibiki, Thermofluid Dynamics of Two-phase Flow, Springer, New
York, 2006.

[2] M. Ozawa, Critical heat flux induced by flow instability in boiling channels, in:
Proceedings of the ECI International Conference on Boiling Heat Transfer,
Spoleto, 2006, Paper No. KL-2.

[3] N. Takada, M. Misawa, A. Tomiyama, A phase-field method for interface-tracking
simulation of two-phase flows, Math. Comput. Simul. 72 (2006) 220–226.

[4] K. Ito, M. Ozawa, M. Shoji, Pattern-dynamics approach to two-phase flow
regime transition, in: Proceedings of the Japan-US seminar on Two-Phase Flow
Dynamics, vol. 1, Nagahama, 2004, pp. 103–112.

[5] M. Ozawa, T. Ami, H. Umekawa, M. Shoji, Pattern dynamics simulation of void
propagation, Multiphase Sci. Technol. 19 (4) (2007) 343–361.

[6] T. Ami, H. Umekawa, M. Ozawa, M. Shoji, Investigation on two-phase flow
dynamics with discrete bubble model, Therm. Sci. Eng. 15 (4) (2007) 197–209.

[7] T.B. Benjamin, Gravity currents and related phenomena, J. Fluid Mech. 31 (2)
(1968) 209–248.

[8] M.E. Weber, Drift in intermittent two-phase flow in horizontal pipe, Can. J.
Chem. Eng. 59 (3) (1981) 398–399.

[9] T. Sakaguchi, M. Ozawa, H. Hamaguchi, T. Fukunaga, Behavior of a large bubble
in a horizontal channel (2nd report, Large bubble penetrating into running
liquid), Trans. JSME Ser. B 56(527) (1990) 1891–1898.

[10] H. Schlichting, Boundary Layer Theory, Sixth ed., McGraw-Hill, New York,
1968. pp. 685–695.

[11] K. Ito, M. Inoue, M. Ozawa, M. Shoji, A simplified model of gas–liquid two-
phase flow pattern transition, Heat Transfer-Asian Res. 33 (7) (2004) 445–461.

[12] M. Ozawa, T. Sakaguchi, H. Hamaguchi, Gas–liquid two-phase transient slug
flow modeling, Memoirs of the Faculty of Engineering, Kobe University, vol. 32,
1985, pp. 1–23.

[13] T. Sakaguchi, M. Ozawa, H. Hamaguchi, F. Nishiwaki, E. Fujii, Analysis of the
impact force by a transient liquid slug flowing out of a horizontal pipe, Nucl.
Eng. Design 99 (1987) 63–71.

[14] A.E. Dukler, M.G. Hubbard, A model for gas–liquid slug flow in horizontal and
near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337–347.

[15] J.M. Delhay, Instantaneous space-averaged equations, in: J.M. Delhaye, M.
Giot, M.L. Riethmuller (Eds.), Thermohydraulics of Two-Phase Systems for
Industrial Design and Nuclear Engineering, Hemisphere Pub., New York, 1981,
pp. 159–170.

[16] G.B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York,
1974. pp. 26–36.

[17] G.B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969.
pp. 323–324.

[18] T. Yamamoto, Y. Ueda, I. Ishihara, M. Ozawa, H. Umekawa, R. Matsumoto, Flow
boiling heat transfer of carbon dioxide at high pressure in horizontal mini-
channels, in: Proceedings of the Sixth International Conference on Multiphase
Flow, Leipzig, 2007, Paper No. S7_Wed_D_44.

[19] M. Ozawa, T. Ami, I. Ishihara, H. Umekawa, R. Matsumoto, Y. Tanaka, T.
Yamamoto, Y. Ueda, Flow pattern and boiling heat transfer of CO2 in horizontal
small-bore tubes, Int. J. Multiphase Flow 35 (2009) 699–709.

[20] O.C. Jones Jr., N. Zuber, The interrelation between void fraction fluctuations
and flow patterns in two-phase flow, Int. J. Multiphase Flow 2 (1975) 273–306.

[21] L. Cheng, G. Ribatski, J.M. Quibén, J.R. Thome, New prediction methods for CO2

evaporation inside tubes: part I – A two-phase flow pattern map and a flow
pattern based phenomenological model for two-phase flow frictional pressure
drop, Int. J. Heat Mass Transfer 51 (2008) 111–124.

[22] R. Revellin, J.R. Thome, A new type of diabatic flow pattern map for boiling
heat transfer in microchannels, J. Micromech. Microeng. 17 (2007) 788–796.

[23] A.-.E. Schael, M. Kind, Flow pattern and heat transfer characteristics during
flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth
tube data, Int. J. Refrigeration 28 (2005) 1186–1195.

[24] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-
phase, two-component flow in pipes, Chem. Eng. Prog. 45 (1) (1949) 39–48.

[25] D. Chisholm, A theoretical basis for the Lockhart–Martinelli correlation for
two-phase flow, Int. J. Heat Mass Transfer 10 (1967) 1767–1778.

[26] K. Mishima, T. Hibiki, Some characteristics of air-water two-phase flow in
small diameter vertical tubes, Int. J. Multiphase Flow 22 (4) (1996) 703–
712.

[27] M. Ozawa, Flow boiling of carbon dioxide in horizontal mini-channel and
pattern dynamics approach to study flow pattern, in: Proceedings of the
Seventh International Conference Nanochannels, Microchannels and
Minichannels (ICNMM2009), Pohang, 2009, Paper No. 82145.

[28] N. Zuber, J.A. Findlay, Average volumetric concentration in two-phase flow
system, Trans. ASME, J. Heat Transfer 87 (1965) 453–468.

[29] S.Z. Rouhani, E. Axelsson, Calculation of void volume fraction in the subcooled
and quality boiling regions, Int. J. Heat Mass Transfer 13 (1970) 383–393.

[30] D. Steiner, VDI-Wärmeatlas 7/E, chapter Hbb 6, VDI-Verlag GmbH, Düsseldorf,
1994.


	Traveling void wave in horizontal two-phase flow
	Introduction
	Discrete bubble model
	Flow model
	Relative velocity between gas and liquid phases
	Wake effect of preceding bubble
	Compressibility of gas phase
	Phase re-distribution for geometrical consistency

	Numerical simulation
	Void fraction fluctuation and flow pattern map
	Time-averaged characteristics

	Conclusion
	Acknowledgements
	References


